
Combining Model-driven and Schema-based

Program Synthesis

Ewen Denney Jon Whittle

QSS, NASA Ames Research Center,

Moffett Field, CA 94035, USA

{edenney,jonathw}@email.arc.nasa.gov

Abstract

We describe ongoing work which aims to extend the schema-based pro-

gram synthesis paradigm with explicit models. In this context, schemas

can be considered as model-to-model transformations. The combination

of schemas with explicit models offers a number of advantages, namely,

that building synthesis systems becomes much easier since the models

can be used in verification and in adaptation of the synthesis systems.

We illustrate our approach using an example from signal processing.

1 Introduction

Schema-based synthesis is a technique for automatically generating code from
high-level behavioral specifications. The technique has been effectively applied
for generating complete implementations in particular domains, for example,
signal processing algorithms (AutoFilter [5]), and data analysis applications
(AutoBayes [1]). A schema is usually defined as a generic representation of
a family of applications. Synthesis then instantiates a number of schemas and
combines them in a particular way. Schemas are a good way of representing
domain-specific knowledge in a modular and high-level way. Schema-based syn-
thesis has advantages over other forms of code generation in that schemas can
be combined in many different ways thus leading to the ability to generate mul-
tiple implementations from the same specification. These implementations can
be compared against metrics or non-functional requirements before a final choice
of implementation is made.

The OMG’s Model-Driven Architecture (MDA) [3, 4] advocates the devel-
opment of systems by transforming platform independent models (PIMs) into
platform-specific models (PSMs). From an MDA point of view, schemas can be
considered as PIM-to-PIM transformations (from the domain-specific specifica-
tion language to programming-language independent implementations). Many

1



program synthesis systems do not maintain explicit models of the specification
language or of the implementation. However, we do advocate such an approach,
both for the advantages of modeling that it brings to program synthesis and for
the transference of the advantages of synthesis to MDA. One of the key thrusts
of MDA is the automation of model-to-model transformations. Schema-based
synthesis can be seen as one way of automating the transformations.

Most approaches to MDA, however, define transformations in terms of rewrite
rules which are applied to models to yield new models. In our approach, we pro-
pose that the schema (transformation) be defined in terms of an input and an
output model. The input model defines a subset of applications in the domain
that a schema can operate on. The output model defines the result of applying
the schema. In addition, schemas must instantiate the output model to create
specific artifacts which solve the input problem. Instantiation is not normally
considered part of MDA, but is a crucial ingredient in program synthesis. This
paper will show how to combine synthesis and modeling, or, put another way,
how to include instantiation as part of a domain-specific MDA.

We feel that current approaches for defining transformations in MDA, e.g.,
those based on XML, XSLT, do not offer enough flexibility for instantiation.
Synthesis is highly dependent on the specifics of the particular problem under
consideration in a way that MDA is not. For example, different instantiations of
models will be generated according to the problem context. Hence, any language
to define such transformations must have mechanisms for accessing instances.

The benefits to MDA of merging synthesis and modeling come from the fact
that synthesis systems are good at automating transformations. For example,
the AutoFilter [5] and AutoBayes [1] systems apply multiple schemas to
solve a particular problem, and the correct application order of the schemas
can be found through search-based methods. MDA could benefit from these
techniques.

2 Schema-based Synthesis

Program synthesis comprises a range of techniques for the automatic genera-
tion of low-level executable code from high-level, declarative specifications of
program behavior. Traditionally, program synthesis has taken the deductive
approach, where programs are formally derived within a constructive theorem
prover. The generative approach, in contrast, automates the combination of
program templates. The schema-based approach, which we adopt here, is a
combination of these two paradigms.

A schema is essentially a program template together with applicability con-
ditions. During synthesis, schemas are recursively applied to assemble code in
a platform-independent intermediate language. When a program has been fully
constructed, it is passed to a backend code generator which then translates the
program into a given target platform.

2



3 Schema-based Modeling

In this section, we propose a schema development process which directly in-
corporates explicit models. Our idea is that schemas should be defined with
respect to explicit input and output models. First we give a general overview of
the schema development process and then we discuss how this impacts on the
models and schemas.

Input Output
Model

Internal
Model

Internal
Model

Intermediate
Code

model

optional

constraints

Model

Schema

Submodel
Output
Submodel

Extract

optional

partially instantiated

Submodel

Input

fully instantiated

Access Access and Instantiate

Submodel

Specification

Translate

Figure 1: The Schema Development Process

Figure 1 shows the artifacts involved in model-based schema development.
The input model is a representation of the key concepts that can be included
in specifications and their inter-relationships. The output model, on the other
hand, defines a model of the generated code. The action of schemas is to grad-
ually instantiate the output model. Thus its instantiation can be regarded as
representing the synthesis state so, in addition to code fragments, records any
design decisions that have been made in the course of synthesis, plus any extra
information that the schemas need.

The input/output models are independent of a particular specification lan-
guage or intermediate programming language. Rather, they are domain-specific
representations of the structure and relationships of the generated artifacts1 —

1which may, in general, be something other than code. Here, we use “code” in a general

sense.

3



i.e., an abstract syntax for the domain-specific artifact generated.
Access to the models is mediated via front- and back-ends. The input model

must come with an extraction function that defines how input model elements
can be derived from elements of a particular specification language. Similarly,
the output model requires a translation function that describes how to obtain
code in the intermediate language given an instantiated model.

In addition to providing models of the input and output of the synthesizer, it
is often useful to optionally provide “snapshots” at various stages of the synthesis
process. These internal models can specify additional entities, which do not
appear in the final model. Moreover, models may have additional constraints
specified between them, shown by dotted arrows in Figure 1, which can be used
for verification purposes both during and after synthesis.

The upper half of Figure 1 shows the process for developing a schema. A
schema takes as input two models — an instantiated input model and a partially
instantiated output model2 and returns a partially instantiated output model.
Scoping mechanisms can be used to limit the input model that a schema has
access to or to limit the output model that can be instantiated. This can be used,
for example, to indicate that a schema only constructs a certain fragment of the
program. In principle, access to the input specification can also be scoped,
but non-compositionality often means that this is not appropriate. Schemas
typically need access to most of the input model to construct code fragments

Ideally, models should be developed before schema writing begins. In prac-
tice, however, things are likely to be less clear-cut, with model and schema
development proceeding in parallel. It is precisely because of this incremen-
tal development of models that we need schemas to be defined with respect to
explicit models.

We now illustrate these ideas with an example from the state estimation
domain. We discuss how to define models and give a schema following the
methodology set out so far.

3.1 Kalman Filter Models

We will use UML class diagrams as our modeling language. An alternative would
be some form of grammar notation although is more appropriate for syntactic
domains. A graphical notation like class diagrams is less prescriptive, and more
appropriate for underspecified domains.

We use Kalman filters as a motivating example. These are recursive signal
processing algorithms used to estimate system state from noisy sensor data.
AutoFilter is a schema-based program synthesis system which can automat-
ically derive a range of Kalman filters from high-level specifications. This is
a suitable domain for program synthesis (not least because of its relevance for
NASA) since there is a wide range of algorithms used to solve mathemati-
cally well-defined problems in this area; yet it is precisely the variability and

2more generally, a schema could take internal models.

4



complexity of potential solutions which makes implementations laborious and
error-prone.

The output model for Kalman filters is given in Figure 2. It describes the
“solution space” in terms of the high-level structure of the possible solutions.
Input models can be given similarly but, in contrast, describe the mathematical
structure of the “problem space” in terms of the physics of the problem.

Measurement Processing

Post Loop

Measurement Predict Measurement Tran HoldMeasurement

State Estimate proj eq State Estimate updt eq Gain eq Error Covariance proj eq Error Covariance updt eq

Loop

Control Transition

Measurement Transition

State Transition

Gain Identity Measurement Measurement Covariance Measurement Predict Measurement Tran Hold

Filter Output

Control TransitionControl Input

Error Covariance updateError Covariance project

State TransitionState Estimate updateState Estimate projectProcess CovarianceNominalMeasurement Transition

Declaration

Initialization

Filter Output Nominal

0..*

0..*

0..*

0..1

0..1

0..1

1..1 1..1 1..1 1..1 1..1

1..*

1..1

1..*

1..1 1..1

1..11..1 0..1

0..*

0..*

0..1 0..1

1..1

1..1

1..*

1..*

0..1

1..*

1..1

0..1 0..1 0..10..1

1..*

0..1

0..1

1..*

Kalman Filter

update_interval: real

steps: int

number_iterations : int

<<set>>

<<list>>

Update Loop Dependents

row_size: int

values[0..*]: real

Matrix

col_size: int

name : string

Figure 2: Domain description of Kalman Filter output (from [2])

The model given here simply defines the static syntactic structure of the gen-
erated code. We can also enforce semantic constraints on the input and output
models (as well as between them) by annotating models with OCL constraints.
Schemas (i.e. model transformations) would then be required to satisfy these
constraints.

Although the tradition within program synthesis (especially the deductive
approach) has been to completely axiomatize the problem domain and reason
formally about the derivation process, we aim, rather, to allow users to choose
their level of formalism, by allowing optional annotations.

5



3.2 A Kalman Filter Schema

In keeping with the OO-style we are following, we use a Java-like syntax to
define a schema for a standard Kalman Filter (Figure 3). This schema generates
fully instantiated code but, in general, a schema need only partially instantiate
a model. Schemas have two inputs: a fully instantiated input model, and a

public schema: linear_discrete_kalman_filter (ddkf_in kf_in, ddkf_out kf_out) {
/* Declare new filter and give its name from spec */

kf_out::Kalman Filter kf = new kf_out::Kalman Filter();

kf.name = kf_in::Model.name;

/* ASSUMPTIONS */

. . .

/* PRECONDITIONS */

. . .

/* Instantiate main KF loop */

kf_out::Loop kf_loop = new kf_out::Loop();

kf.loop = kf_loop;

kf_loop.lower_bound = 0;

kf_loop.upper_bound = kf_in::Model.steps;

/* Instantiate rest of output model by calling subschemas.

Each subschema is restricted to a submodel of output model. */

kf.declaration = kf_declarations(kf_in, kf_out::Declaration);

kf.initialization = kf_initialization(kf_in, kf_out::Initialization);

. . .

return kf_out; }

Figure 3: Top-level schema for standard Kalman Filter

partially instantiated output model. Schemas are scoped to restrict access to the
full output model — the notation schema name(in model, out model :: Class)
means call the schema with name schema name with input model in model and
output model defined as the directed acyclic graph in out model with Class as
root. Declarations are similarly scoped. In the third line, kf is declared as a
new kalman filter scoped to the output model (kf out), and later kf loop is
declared as a new loop (again, in kf out). We then link the two by assigning
kf loop to be the loop of the filter (i.e. kf.loop).

The schema calls a number of sub-schemas, each of which constructs a frag-
ment of the program text. For example, kf declarations constructs the ap-
propriate variable declarations and makes this information available to the other
schemas. Finally, the schema returns the (partially) instantiated output model.

Schemas also contain assumptions and preconditions (omitted here). The

6



informal distinction is that preconditions can be checked for satisfiability from
the specification whereas assumptions cannot (because nothing has been said
about them in the specification). It may be desirable to identify properties as
first class operators in the models and to restrict assumptions and precondi-
tions to expressions defined over those operators only. Both assumptions and
preconditions can refer to the original specification, as well as to what has been
constructed already.

4 Conclusions

Our current efforts lie in developing language support for a schema-based syn-
thesis system, explicitly linking schemas to models. We anticipate a core schema
language, together with various optional extensions, such as a means of specify-
ing an architecture, a way to incorporate comments and correctness annotations
into the synthesis process, optional postconditions in schemas, or a means of re-
ferring to the synthesis state. We are also formalizing a semantics for the schema
language.

We believe that a model-centered schema language for program synthesis
offers a number of advantages. First, it makes it possible for domain experts
to adapt and extend existing schemas, and to create new ones. In the cur-
rent implementation of AutoFilter, assumptions about the domain model
are implicitly distributed throughout the code, so it is not always clear where
structural assumptions have been made. Second, we can enable some form of
correctness checking on the well-formedness of schemas.

Finally, there are several interesting extensions to the modeling languages
that might be useful for program synthesis, such as hierarchy, scoping, and
ordered aggregations.

References

[1] B. Fischer and J. Schumann. AutoBayes: A system for generating data
analysis programs from statistical models. J. Functional Programming,
13(3):483–508, May 2003.

[2] E. Grant and J. Whittle. Checking program synthesizer input/output. In
Workshop on Domain-Specific Modeling, OOPSLA’03, Los Angeles, CA,
2003.

[3] A. Kleppe, J. Warmer, and W. Bast. MDA explained: The Model Driven
Architecture (Practice and Promise). Addison Wesley, 2003.

[4] J. Mukeri and J. Miller. MDA Guide Version 1.0. Object Management
Group Specification, 2003.

[5] J. Whittle and J. Schumann. Automating the implementation of Kalman
filter algorithms, 2003. In review.

7


